
MfiY-30-2001 11=40 COMPUTER SCIENCE

• REPORT DOCUMENTATION PAGE

510 642 3962 P.06

Form Approved
OMBNO. 0704-OI85

I'ublic Reporting burden torihncnlkctiim nf infmrowm ij estimated W »vcrife 1 houi per rciponi*. tuciuling the tire for n^rwmy uturoction». searching justing data sources, fathering
ted maintaining the data needed, ud umplrling .ml revie-»wt the collection of Information Scad conimetit regarding Urij b»4cn estimates 01 any other aiptsl or ihn colleeno« of
information mcludin; suggestion) for reducing ihU burden, 10 Washington Headqtamen Service», fjirrclontt tor info iminni Oyeutiuus and Reports. 1215 Jefferson Dav« Highway. Suite
1204. Arlington. VA 22202-4302, and 10 the Office ofMaiBirnnrnl and Budget Paperwork Reduction Erojecl (0704-01*1,) W^inpon. DC 2050?.
1. AGHNCY USE ONLY (Leave Blank) 2. REPORT DATE

4 TITLE AND SUBTITLE

Systems Software for Inrpilar Parallel Applications

6 AUTHOK(S)

Professor Katherine Yelick

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(LS)

University of California, Berkeley
Computer Science Division
777 Sod» Hill
Berkeley, CA 9472Ü

<1

3. REPORT TYPE AND DATES COVERED
Final Report: June 1,1996 - May 31,2too

FUNDING NUMBERS

DAAH04-96-1-0079

8 PERFORMING ORGANIZATION
R£K>RT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND

U. S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ARO PropoMl # 35610-MA-YIP

7
11 SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the authors) and should not be
construed as an official Department of the Army position, policy or decision, unless so designated by the
documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

12 b. DISTRIBUTION CODE

The long-term objective of this project was to improve programmability of parallel machines for
irregular applications with unpredictable computational costs, pointer-based data structures, dynamically
allocated data structures, or asynchronous communications. Example applications include sparse matrix
algorithms, adaptive mesh refinement algorithms, and symbolic algorithms. The trend in recent years toward
deeper memory hierarchies, including several levels of cache, DRAM, network, and disk, has meant that the
more irregular applications have not yet benefited from increasing processor speed as much as more regular
applications. Our goal was to provide programmers with high level tools for writing their high performance
applications, and our specific tasks addressed three aspects of this problem: application understanding, library
development, and compiler optimizations.

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OR REPORT
 UNCLASSIFIED

18 SECURITY CLASSIFICATION
ON THIS PAGE
 UNCLASSIFIED

19. SECURrTY CLASSmCATlON
OF ABSTRACT
 IfNCKASSTFTED

15. NUMBKR OF PAGES

10. PRICE 4 iCODE

20 LIMITATION OF ABSTRACT

VI.

NSN 7540-01-280-5500
Standard Fora 298 (Rrv.2-89)

Prescribed by ANSI Std. 239-18
298-102

20010619 094

MAY-30-2001 11=40 COMPUTER SCIENCE 510 642 3962 P.05

MASTER COPY: PLEASE KEEP THIS "MEMORANDUM OF TRANSMITTAL" BLANK FOR
REPRODUCTION PURPOSES. WHEN REPORTS ARE GENERATED UNDER THE ARO
SPONSORSHIP, FORWARD A COMPLETED COPY OF THIS FORM WITH EACH REPORT SHIPMENT
TO THE ARO. THIS WILL ASSURE PROPER IDENTIFICATION. NOT TO BE USED FOR INTERIM
PROGRESS REPORTS; SEE PAGE 2 FOR INTERIM PROGRESS REPORT INSTRUCTIONS.

MEMORANDUM OF TRANSMITTAL

U.S. Aimy Research Office
ATTN: AMSRL-RO-BI (TR)
P.O.Box 12211
Research Triangle Park, NC 27709-2211

□ Reprint (Orig + 2 copies)

□ Manuscript (1 copy)

□ Technical Report (Orig + 2 copies)

^ Final Progress Report (Orig + 2 copies)

□ Related Materials, Abstracts, Theses (1
copy)

CONTRACT/GRANT NUMBER: DAAH04-96-10079

REPORT TITLE: Systems Software for Irregular Parallel Applications

is forwarded for your information.

SUBMITTED FOR PUBLICATION TO (applicable only if report is manuscript):

Sincerely,

ran Lindsey
"'Administrative Specialist
University of California, Berkeley
Computer Science Division
741 Soda Hall-1776
Berkeley, CA 94720-1776

Enclosure 3

MfiY-30-2001 11=41 COMPUTER SCIENCE 510 642 3962 P.0?

SYSTEMS SOFTWARE FOR IRREGULAR PARALLEL APPLICATIONS

FINAL PROGRESS

KATHERINE YEL1CK

MAY 24, 2001

U.S. ARMY RESEARCH OFFICE

ARO GRANT #: DAAH04-96-1-0079

UNIVERSITY OF CALIFORNIA BERKELEY

APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED.

THE VIEWS, OPINIONS, AND/OR FINDINGS CONTAINED IN THE REPORT ARE
THOSE OF THE AUTHOR(S) AND SHOULD NOT BE CONSTRUED AS AN
OFFICIAL DEPARTMENT OF THE ARMY POSITION, POLICY, OR DECISION,
UNLESS SO DESIGNATED BY OTHER DOCUMENTATION

MAY-30-2001 11=41 COMPUTER SCIENCE 510 642 3962 P.08

Systems Software for Irregular Parallel Applications

Katherine Yelick
University of California, Berkeley

Computer Science Division
777 Soda Hall

Berkeley, CA 94720
510-642-8900 Phone
510-642-3962 Fax

yelick@cs.berkeley.edu

Research Overview

The long-term objective of this project was to improve programmability of
parallel machines for irregular applications with unpredictable computational costs,
pointer-based data structures, dynamically-allocated data structures, or asynchronous
communications. Example applications include sparse matrix algorithms, adaptive mesh
refinement algorithms, and symbolic algorithms. The trend in recent years toward deeper
memory hierarchies, including several levels of cache, DRAM, network, and disk, has
meant mat the more irregular applications have not yet benefited from increasing
processor speed as much as more regular applications. Our goal was to provide
programmers with high level tools for writing their high performance applications, and
our specific tasks addressed three aspects of this problem: application understanding,
library development, and compiler optimizations.

The first major artifact of this work is the Sparsity system for automatically
producing highly tuned sparse matrix algorithms for specific machines and matrices. The
second is a set of communication optimizations for the Titanium language, a parallel
dialect of Java. This involved both research on new static analyses and better
communication subsystems for implementing the parallel constructs on distributed
memory multiprocessors and clusters. The funding from this grant targeted lightweight
communication substrates, which are described in more detail below along with the
Sparsity results. Our group has a history of performing application studies to compliment
the basic systems research by suggesting new research problems and aiding with
evaluation of systems. As part of this project, we looked at two new irregular
applications: the EM algorithm used in the analysis of large data sets and perturbation
methods used in modeling dynamical systems. The application studies were very
successful in their own right, leading to papers and theses, but we felt that further
investment in detailed performance tuning and parallelization would be premature, given
that there was still a great deal of innovation possible at the high level algorithm level.

MPIY-30-2001 11=42 COMPUTER SCIENCE 510 642 3962 P.09

Summary of Most Important Results

Sparsity: Automatic Generation of Sparse Matrix Kernels

Sparse matrix operations dominate the performance of many scientific and
engineering applications. In particular, iterative methods are commonly used in
algorithms for linear systems, least squares problems, and eigenvalue problems, which
involve a sparse matrix-vector product in the inner loop. The performance of sparse
matrix algorithms is often disappointing on modern machines because the algorithms
have poor temporal and spatial locality and are therefore limited by the speed of main
memory. Unfortunately, the performance gap between memory and processing is
steadily increasing, as memory performance has not kept pace with the well-known
"Moore's Law" speedup that processor performance has enjoyed. Performance is also
highly dependent on the nonzero structure of the sparse matrix, the organization of the
data and computation, and the exact parameters of the hardware memory system.

We developed a toolkit called Sparsity for the automatic optimization of sparse
matrix-vector multiplication. We started with an extensive study of possible memory
hierarchy optimizations, in particular reorganizing the matrix and computation around
blocks of the matrix. We demonstrated that certain kinds of blocking can be effective for
both registers and caches, although the nature ofthat tiling is quite different due to the
differences in size between typical register sets and caches. (Tiling a sparse matrix is
entirely different than riling dense matrices because the matrix is stored as lists of
coordinates and values.) Both types of blocking were shown to be highly effective for
some matrices, but ineffective on others, and the choice of block size is also shown to be
highly dependent on the matrix and machine. Thus, to automatically determine when and
how the optimizations should be applied, we employed a combinations of search over a
set of possible optimized versions along with newly devised performance models to
eliminate or constrain the search to make it practical.

We also considered a common variation of basic sparse matrix-vector
multiplication in which a sparse matrix is multiplied by a set of dense vectors. This
operation arises, for example, when there are multiple right-hand sides in a linear solver
or when a higher level algorithm has been blocked. The introduction of multiple vectors
offers enormous optimization opportunities, effectively changing a matrix-vector
operation into a matrix-matrix operation, it is well known that for these dense matrices,
the latter algorithm has much higher data reuse than the former, and so can achieve much
better performance; the same is true in the sparse case.

The Sparsity system was designed as a web service so scientists and engineers
could easily obtain highly optimized sparse matrix routines without understanding the
specifics of the optimization techniques or how they arc selected. It is available from
http://www.cs.Berkelev.edu/cji.

hi addition to the system itself, we did an extensive performance study of over 40
matrices on a variety of machines. The matrices are taken form various scientific and
engineering problems, as well as linear programming and data mining. The machines
include the Alpha 21164, UltraSPARC L MIPS R10000, and Power PC 604e. These
benchmark results are useful for understanding the performance differences across
application domains, the effectiveness of the optimizations, and the costs associated with
evaluating our performance models to applying the optimizations. The conclusion is that
Sparsity is highly effective, producing routines that are up to 3.1 times faster for a single
vector and 6.2 times faster for multiple vectors.

MfiY-30-2001 11=42 COMPUTER SCIENCE 510 642 3962 P.10

The work on Sparsity resulted in a PhD thesis and two refereed publications
during the period of this grant. (Additional papers on this research and follow-on
projects have continued to be published after the end of the contract.)

Communication Optimizations for Titanium

Titanium is an explicitly parallel language for parallel scientific computing. It is
based on Java and using a Single Process Multiple Data (SPMD) model of computation
with a global address space. The global address space allows programmers to build
complex distributed data structures that are not possible in message passing languages,
and the SPMD model gives an efficient execution strategy without expensive runtime
scheduling. Titanium is a dialect of Java, but it is compiled to machine code (though C),
rather than to a virtual machine model. It shares the global address space and SPMD
parallelism model with Split-C, UPC, AC, and Co-Array Fortran.

The work funded by this grant looked at techniques for efficient implementation
of the global address space primitives (mainly remote read and write) on top of modern
multiprocessors. In 1996 we performed a study of hardware support for a global address
space (as distinct from shared memory, which typically moved data around automatically
in cache lines). We examined a spectrum of machine, from those with little or no
hardware support for remote memory operations, to those with powerful "communication
co-processors," which were sometimes as powerful as the main processor. We found that
subtle interactions between the main processor and co-processor could sometimes limit
the co-processor, and the more limited hardware was sometimes more predictable and
therefore easier to use. In 1998 we looked at theoretical models for network
performance, developing a model of the communication performance of store-and-
forward networks.

In 1999 we looked at the novel Tera platform as a target for SPMD languages like
Titanium. The Tera Mulit-Threaded Architecture (MTA) is a parallel architecture
designed to support lightweight threads in a uniform address space. The architecture is
in sharp contrast to most other scalable multiprocessors, which have a deep memory
hierarchy with caches, local and remote memory, and many cycles of overhead for
creating and switching between threads. We explored the question of whether Titanium's
computational model could be used effectively on a machine like the MTA, and we
described some of the design issues in the MTA implementation of Titanium. Memory
latency on the MTA is roughly 100-160 cycles, independent of the address being
accessed; this latency is masked by having several threads of execution on each CPU,
with automatic switching between threads on each cycle. Titanium applications are
designed to map all available parallelism onto a fixed number of coarse-grained processes
and to minimize non-local memory references, while the MTA demands a very high
degree of parallelism and has little concern over locality. We therefore augmented
Titanium's SPMD model by adding loop level parallelization and then considered various
mappings of both levels of parallelism onto the MTA, assigning threads to a particular
CPU or allowing them to migrate. Ideally, one would like to present all levels of
parallelism to the MTA and let it dynamically schedule the threads for good load balance.
However, we found that distinguishing between the static, coarse-grained parallelism in
Titanium and the dynamic loop level parallelism provides useful information for the
thread scheduler, even though locality is not a concern. The reason is that statically-
defined parallelism allows for a more equitable distribution of resources, i.e. better load
balance. We performed several experiments with our implementation, including both
micro-benchmarks and applications studies.

rifiY-30-2001 11=43 COMPUTER SCIENCE 510 642 3962 P.11

In recent years, market pressures have forced scientists in need of high
performance machines to use clusters, whether these are designed as multiprocessors as
in the case of the IBM SP line, or built by the end user as a cluster of commodity
machines. There has always been an interest in starting high end compute nodes, which
in recent years has meant shared memory processors (SMPs). However, these
hierarchical machines add yet another level of complexity to the performance
optimization space. These CLUMP (Clusters of Multiprocessors) architectures offer
improved scalability over clusters of single-processor nodes by potentially replacing
network communication latency with far lower bus latency, but the heterogeneous nature
of communication on CLUMP systems makes them more difficult to program effectively.
We showed that a reimplemtation of the Titanium runtime library on top of the LAPI
(one-sided, lightweight communication layer) on the IBM SP cluster of SMPs achieved
performance on a CLUMP that was similar to that of an equivalent cluster of
uniprocessors, with no modification to the application code. This gives programmers a
single parallel prognmiming model for CLUMPs, rather than a mixture of threads and
message passing that is often used. The Titanium compiler generates memory
loads/stores when the data is local to the SMP and messages when it is remote. The only
overhead of this uniformity is the extra branch in the shared memory case to determine
that the data is local, and the storage associated with a pointer to allow it to store the
processor number in addition to the memory address of the data. Treating the machine as
a flat cluster is attractive, but does not take advantage of the two-level communication
hierarchy on a CLUMP. We therefore exposed some alternate models, and believe that
ultimately application designers will have to account for the extra level of memory
hierarchy to achieve the best performance.

Significant Accomplishments

The following list highlights the accomplishments in this effort.

1. The Sparsity system was released for public use in 2000. The software is
available for download from http://www.cs.berkelev.edu7~ejim/Sparsity. Sparsity
self-tunes implementations of sparse matrix-vector multiplication as well as a
sparse matrix times a set of dense vectors. This work is part of a recent trend
toward automatic tuning of numerical kernels. A special session of the
International Conference on Computational Science was devoted to this topic in
May 2001, and although quite recent, it is being transferred to industry. The
Matlab system, for example, is starting to use this technology for its dense matrix
operation, based on an system called Atlas from U. Tennessee.

2. Titanium has been publicly available for several years. It runs on many
platforms, including Uniprocessors, SMPs, and Clusters. The communication and
optimizations work produced under this grant has been incorporated into the
compiler. Researchers from LBL have used some of the Titanium
implementations that are not part of the standard release, namely the Tera MTA
and IBM SP. With independent funding from NSF, we are working to make these
research prototypes into standard tools. In addition, other language efforts like
UPC and Co-Array Fortran may benefit from the work in lightweight
communication layers and analysis algorithms.

MAY-30-2001 11:44 COMPUTER SCIENCE 510 642 3962 P. 12

In collaboration with Phillip Collela at NERS/LBNL, we have worked on
application level libraries to support for computational fluid dynamics, in
particular AMR, through Titanium. That group implemented two fluid solvers
based on AMR (one for hyperbolic equations and the other for elliptic equations)
and one non-adaptive solver for elliptic equations on infinite domains. The
communication optimizations and performance evaluation done as part of this
work helped with both the understanding the kinds of algorithms that would
perform best on modern machine and improved the quality of these
implementations.

MflY-30-2001 11:44 COMPUTER SCIENCE 510 642 3962 P.13

Listing of all publications. Please break down publications in the following order:
Papers published in peer-reviewed journals

A. Krishnamurthy and K. Yelick. "Analysis and Optimizations for Shared Address
Space Programs." Journal of Parallel and Distributed Computation, 1996.

S. Chakrabarti, J. Demmel, and K. Yelick. "Models and Scheduling Algorithms for
Mixed Data and Task Parallel Programs." Journal of Parallel and Distributed Computing,
Vol. 47, pp. 168-184. 1997.

K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krisbnamurthy, P.
Hilfinger, S. Graham, A. Aiken. "Titanium: A High Performance Java Dialect."
Concurrency: Practice and Experience, September-November, 1998, pp. 825-36.

E. Deprit and A. Deprit. "Poincaire's mcthode nouvelle by skew composition." Celestial
Mechanics and Dynamical Astronomy, vol. 74 (no.3), Kluwer Academic Publishers,
1999. pp. 175-97.

Papers published in non-peer-reviewed journals or in conference proceedings

A. Krishnamurthy, K. E. Schauser, C. J. Scheinman, R. Y. Wang, D. E. Culler, and K.
Yelick. "Evaluation of Architectural Support for Global Address-Based Communication
in Large-Scale Parallel Machines." Proceedings of Architecture Support on
Programming Languages and Operating Systems, November, 1996.

K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P.
Hilfinger, S. Graham, P. Colclla, A, Aiken. "Titanium: A High-Performance Java
Dialect." ACM 1998 Workshop on Java for High-Performance Network Computing,
February 1998.

R. Wang, A. Krishnamurthy, R. Martin, T. Anderson, and D. Culler. "Towards a Theory
of Optimal Communication Pipelines." SIGMETRICS '98: PERFORMANCE '98 Joint
International Conference on Measurement and Modeling of Computer Systems.

E.-J. Im and K. Yelick. "Model-Based Memory Hierarchy Optimizations for Sparse
Matrices.*' Workshop on Profile and Feedback-Directed Compilation, Paris, France,
October, 1998.

E. Im and K. A. Yelick. "Optimizing Sparse Matrix Vector Multiplication on SMPs."
SIAM Conference Parallel Processing for Scientific Computing, San Antonio, TX, March
1999.

Papers presented at meetings, but not published in conference proceedings

Manuscripts submitted, but not published

A. Deprit, J. Palacian, E. Deprit, and J.-F. San Juan. "The Relegation Algorithm."
Submitted to Physica D. (To appear.)

MRY-30-2001 11=45 COMPUTER SCIENCE 510 642 3962 P.14

Technical reports and theses (not peer-reviewed)

Soumen Chackrabarti. "Efficient Resource Scheduling in Multiprocessors." Phd Thesis,
Computer Science Division, University of California, Berkeley, UCB/CSD/ 96/923,
November 1996.

E. Deprit. "A Toolbox for Modem Dynamics." PhD Thesis proposal, UC Berkeley,
Computer Science Division, October 1996.

E.-J. Im. "Sparsity: A Toolbox for Sparse Matrix Algorithms." PhD Thesis proposal,
UC Berkeley, Computer Science Division, April 1998.

A. Krishnamurthy, D. Culler, and K. Yelick. "Empirical Evaluation of Global Memory
Support on the CRAY-T3D and CRAY-T3E" UCB//CSD-98-991,1998.

A. Krishnamurthy. "Compiler Analyses and System Support for Optimizing Shared
Address Space Programs." PhD thesis, EECS Department, U.C. Berkeley, May 1999.

Wangcci Ruth Bowman. "Random Projection: A Data Compression Algorithm for EM."
Master's Report, Computer Science Division, U.C. Berkeley, December 1999.

Eun-Jin Im. "Optimizing the Performance of Sparse Matrix-Vector Multiplication."
PhD thesis, Computer Science Division, U.C. Berkeley, May 2000.

Chang-Sun Lin. "The Performance Limitations of SPMD Programs and Clusters of
Shared Memory Multiprocessors." Master Report, May 2000.

MAY-30-2001 11 = 45 COMPUTER SCIENCE 510 642 3962 P. 15

List of all scientific personnel showing any advanced degrees earned by them while
employed on the project

BOWMAN, WANGECI RUTH
DEPRTT, ETI£NNE MAX
IM, EUN-JIN (PhD),now Postdoc
LIN, CHANG-SUN
TANG, KAR MING

Report of Inventions

No inventions during this period.

TOTAL P.15

